ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC проведены высоты AP и BQ, а также медиана CM. Точка R – середина CM. Прямая PQ пересекает прямую AB в точке T. Докажите, что OR⊥TC, где O – центр описанной окружности треугольника ABC. Решение |
Страница: << 24 25 26 27 28 29 30 [Всего задач: 149]
Две окружности касаются внешним образом. A – точка касания их общей внешней касательной с одной из окружностей, B – точка той же окружности, диаметрально противоположная точке A. Докажите, что длина касательной, проведённой из точки B ко второй окружности, равна диаметру первой окружности.
Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что ∠ABM = ∠MQP.
Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что PQ = AC/2. Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный.
В остроугольном треугольнике ABC проведены высоты AP и BQ, а также медиана CM. Точка R – середина CM. Прямая PQ пересекает прямую AB в точке T. Докажите, что OR⊥TC, где O – центр описанной окружности треугольника ABC.
Страница: << 24 25 26 27 28 29 30 [Всего задач: 149] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|