ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Решите систему |
Страница: << 130 131 132 133 134 135 136 >> [Всего задач: 1221]
Применим метод Ньютона (см. задачу 61328) для
приближённого нахождения корней многочлена f(x) = x² – x – 1. Какие последовательности чисел получатся, если
Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|?
Решите систему
Все клетки квадратной таблицы 100×100 пронумерованы в некотором порядке числами от 1 до 10000. Петя закрашивает клетки по следующим правилам. Вначале он закрашивает k клеток по своему усмотрению. Далее каждым ходом Петя может закрасить одну еще не закрашенную клетку с номером a, если для неё выполнено хотя бы одно из двух условий: либо в одной строке с ней есть уже закрашенная клетка с номером меньшим, чем a; либо в одном столбце с ней есть уже закрашенная клетка с номером большим, чем a. При каком наименьшем k независимо от исходной нумерации Петя за несколько ходов сможет закрасить все клетки таблицы?
Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)
Страница: << 130 131 132 133 134 135 136 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|