ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Вписанный угол равен половине центрального
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC угол C прямой. На катете CB как на диаметре во внешнюю сторону построена полуокружность, точка N – середина этой полуокружности. Докажите, что прямая AN делит пополам биссектрису CL. Решение |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 207]
Окружность k проходит через вершины B и C треугольника ABC (AB > AC) и пересекает продолжения сторон AB и AC за точки B и C в точках P и Q соответственно. Пусть AA1 – высота треугольника ABC. Известно, что A1P = A1Q. Докажите, что угол PA1Q в два раза больше угла A треугольника ABC.
В треугольнике ABC угол C прямой. На катете CB как на диаметре во внешнюю сторону построена полуокружность, точка N – середина этой полуокружности. Докажите, что прямая AN делит пополам биссектрису CL.
Около единичного квадрата ABCD описана окружность, на которой выбрана точка М.
Окружность с центром O проходит через концы гипотенузы прямоугольного треугольника и пересекает его катеты в точках M и K.
Высоты неравнобедренного остроугольного треугольника ABC пересекаются в точке H. O – центр описанной окружности треугольника BHC. Центр I вписанной окружности треугольника ABC лежит на отрезке OA. Найдите угол A.
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 207] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|