|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что равные хорды удалены от центра окружности на равные расстояния. В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем? У каждого из художников творческого объединения "Терпение и труд" свой рабочий график. Шестеро из них пишут по одной картине раз в два дня, ещё восемь художников – по одной картине раз в три дня, остальные не пишут картин никогда. С 22 по 26 сентября они написали в общей сложности 30 картин. Сколько картин они напишут 27 сентября? В выпуклом четырёхугольнике ABCD известно, что AB = BC = CD, M — точка пересечения диагоналей, K — точка точка пересечения биссектрис углов A и D. Докажите, что точки A, M, K и D лежат на одной окружности.
В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 113]
В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC.
Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC.
В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.
Окружность, вписанная в прямоугольный треугольник ABC (∠ABC = 90°), касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0.
В прямоугольном треугольнике ABC (∠B = 90°) проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что OB1 = OB2.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 113] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|