Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 112]
|
|
Сложность: 3+ Классы: 8,9,10
|
Окружность, вписанная в прямоугольный треугольник ABC, касается катетов
AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что AB0 = BA0.
|
|
Сложность: 3+ Классы: 8,9,10
|
Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD.
Найдите угол AB1C.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM.
В прямоугольном треугольнике ABC (∠C = 90°) биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что OI ⊥ AB.
|
|
Сложность: 3+ Классы: 8,9,10
|
Вневписанная окружность прямоугольного треугольника ABC (∠B = 90°) касается стороны BC в точке A1, а прямой AC в точке A2. Прямая A1A2 пересекает (первый раз) вписанную окружность треугольника ABC в точке A'; аналогично определяется точка C'. Докажите, что AC || A'C'.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 112]