Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Окружность касается сторон AB и BC треугольника ABC соответственно в точках D и E. Найдите высоту треугольника ABC, опущенную из точки A, если AB = 5, AC = 2, а точки A, D, E, C лежат на одной окружности.

Вниз   Решение


Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.

ВверхВниз   Решение


Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?

ВверхВниз   Решение


Доска 2N×2N покрыта неперекрывающимися доминошками 1×2. По доске прошла хромая ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход продольным, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково

а) наибольшее;

б) наименьшее возможное число продольных ходов?

ВверхВниз   Решение


Рассмотрим все окружности, касающиеся данной прямой и данной окружности (внешним образом). В каждом случае проведём прямую через точки касания. Докажите, что все эти прямые проходят через одну и ту же точку. (Это же верно и для случая внутреннего касания окружностей.)

ВверхВниз   Решение


Постройте окружность данного радиуса, проходящую через две данные точки.

ВверхВниз   Решение


Докажите, что если диагональ какого-нибудь четырёхугольника делит другую диагональ пополам, то она делит пополам и площадь четырёхугольника.

ВверхВниз   Решение


Можно ли правильную треугольную призму разрезать на две равные пирамиды?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 132]      



Задача 98493

Темы:   [ Призма (прочее) ]
[ Конус (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 10,11

Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ.

Прислать комментарий     Решение

Задача 64756

Темы:   [ Правильная призма ]
[ Примеры и контрпримеры. Конструкции ]
[ Движение помогает решить задачу ]
Сложность: 4-

Можно ли правильную треугольную призму разрезать на две равные пирамиды?

Прислать комментарий     Решение

Задача 65488

Темы:   [ Призма (прочее) ]
[ Сечения, развертки и остовы (прочее) ]
Сложность: 4-
Классы: 10,11

Рассматриваются все призмы, в основании которых лежит выпуклый 2015-угольник.
Какое наибольшее количество рёбер такой призмы может пересечь плоскость, не проходящая через её вершины?

Прислать комментарий     Решение

Задача 98565

Темы:   [ Правильная призма ]
[ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Существует ли правильная треугольная призма, которую можно оклеить (без наложений) различными равносторонними треугольниками? (Разрешается перегибать треугольники через рёбра призмы.)

Прислать комментарий     Решение

Задача 116282

Темы:   [ Прямая призма ]
[ Свойства сечений ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.
  а) Могут ли спилы быть подобными, но не равными треугольниками?
  б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .