ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.
Найдите сторону квадрата, вписанного в окружность, если известно, что хорда этой окружности, равная 2, удалена от её центра на расстояние, равное 3. Докажите неравенство Коши для пяти чисел, то есть докажите, что при a, b, c , d e ≥ 0 имеет место неравенство
Пусть I – центр вписанной окружности треугольника ABC, M, N – середины дуг ABC и BAC описанной окружности. |
Страница: << 53 54 55 56 57 58 59 [Всего задач: 294]
Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми тоже равно 1. Из точки C одной окружности проведены к другой касательные CA, CB, вторично пересекающие первую окружность в точках B', A'. Прямые AA' и BB' пересекаются в точке Z. Найдите угол XZY.
Пусть I – центр вписанной окружности треугольника ABC, M, N – середины дуг ABC и BAC описанной окружности.
Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?
В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.
Страница: << 53 54 55 56 57 58 59 [Всего задач: 294]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке