ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.

Вниз   Решение


В остроугольном треугольнике ABC угол B равен 60o, AM и CN — его высоты, а Q — середина стороны AC. Докажите, что треугольник MNQ — равносторонний.

ВверхВниз   Решение


Четырехугольник ABCD описан около окружности с центром I . Докажите, что проекции точек B и D на прямые IA и IC лежат на одной окружности.

ВверхВниз   Решение


Четырехзначное число начинается с цифры 6. Эту цифру переставили в конец числа. Полученное число оказалось на 1152 меньше исходного. Найдите исходное число.

ВверхВниз   Решение


Найдите все двузначные числа, квадрат которых равен кубу суммы их цифр.

ВверхВниз   Решение


Квадрат суммы цифр числа A равен сумме цифр числа A2. Найдите все такие двузначные числа A.

ВверхВниз   Решение


Выпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник описанный?

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 73]      



Задача 55655

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные многоугольники ]
Сложность: 4+
Классы: 8,9

Дан вписанный 2n-угольник с углами $ \beta_{1}^{}$, $ \beta_{2}^{}$, ..., $ \beta_{2n}^{}$. Докажите, что

$\displaystyle \beta_{1}^{}$ + $\displaystyle \beta_{3}^{}$ +...+ $\displaystyle \beta_{2n-1}^{}$ = $\displaystyle \beta_{2}^{}$ + $\displaystyle \beta_{4}^{}$ +...+ $\displaystyle \beta_{2n}^{}$.

Верно ли обратное?

Прислать комментарий     Решение


Задача 64981

Темы:   [ Выпуклые многоугольники ]
[ Вписанные и описанные многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Выпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник описанный?

Прислать комментарий     Решение

Задача 65024

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Птолемея ]
[ Теоремы Чевы и Менелая ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Шестиугольник ABCDEF вписан в окружность. Известно, что  AB·CF = 2BC·FACD·EB = 2DE·BCEF·AD = 2FA·DE.
Докажите, что прямые AD, BE и CF пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116135

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Противоположные стороны выпуклого шестиугольника параллельны. Hазовём высотой такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник.

Прислать комментарий     Решение

Задача 56729

 [Теорема Брианшона]
Темы:   [ Радикальная ось ]
[ Вписанные и описанные многоугольники ]
[ Шестиугольники ]
Сложность: 6
Классы: 8,9,10

Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 73]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .