ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Через вершину B треугольника ABC проведена прямая, перпендикулярная медиане BM. Эта прямая пересекает высоты, выходящие из вершин A и C (или их продолжения), в точках K и N. Точки O1 и O2 – центры описанных окружностей треугольников ABK и CBN соответственно. Докажите, что O1M = O2M. Решение |
Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 1275]
Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?
В треугольнике ABC серединные перпендикуляры к сторонам AB и BC пересекают сторону AC в точках P и Q соответственно, причём точка P лежит на отрезке AQ. Докажите, что описанные окружности треугольников PBC и QBA пересекаются на биссектрисе угла PBQ.
На плоскости отмечена точка M, не лежащая на осях координат. По оси ординат движется точка Q, а по оси абсцисс точка P так, что угол PMQ всегда остаётся прямым. Найдите геометрическое место точек N, симметричных M относительно PQ.
Через вершину B треугольника ABC проведена прямая, перпендикулярная медиане BM. Эта прямая пересекает высоты, выходящие из вершин A и C (или их продолжения), в точках K и N. Точки O1 и O2 – центры описанных окружностей треугольников ABK и CBN соответственно. Докажите, что O1M = O2M.
Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей.
Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|