ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что f (0) = f (1) = 0 и что |f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям? Правильную четырёхугольную пирамиду пересекает плоскость, проходящая через вершину основания перпендикулярно противоположному боковому ребру. Площадь получившегося сечения в два раза меньше площади основания пирамиды. Найдите отношение высоты пирамиды к боковому ребру. Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3.
С помощью циркуля и линейки постройте четырёхугольник по трём сторонам и углам, прилежащим к четвёртой.
В треугольник с периметром, равным 20, вписана окружность. Отрезок касательной, проведённый к окружности параллельно основанию, заключённый между сторонами треугольника, равен 2,4. Найдите основание треугольника. Шестиугольник ABCDEF вписан в окружность. Известно, что AB·CF = 2BC·FA, CD·EB = 2DE·BC, EF·AD = 2FA·DE. |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]
Шестиугольник ABCDEF вписан в окружность. Известно, что AB·CF = 2BC·FA, CD·EB = 2DE·BC, EF·AD = 2FA·DE.
Пусть a, b, c, а) S ≤ ab + cd; б) S ≤ ac + bd. в) Докажите, что если хотя бы в одном из этих неравенств достигается равенство, то четырёхугольник можно вписать в окружность.
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. Прямая, проходящая через A, пересекает окружность в точках D и E. Хорда BX параллельна прямой DE. Докажите, что отрезок XC проходит через середину отрезка DE.
Прямые, симметричные диагонали BD четырёхугольника ABCD относительно биссектрис углов B и D, проходят через середину диагонали AC.
B основании четырёхугольной пирамиды SABCD лежит четырёхугольник ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке