ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Шестиугольник ABCDEF вписан в окружность. Известно, что  AB·CF = 2BC·FACD·EB = 2DE·BCEF·AD = 2FA·DE.
Докажите, что прямые AD, BE и CF пересекаются в одной точке.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 73]      



Задача 55655

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные многоугольники ]
Сложность: 4+
Классы: 8,9

Дан вписанный 2n-угольник с углами $ \beta_{1}^{}$, $ \beta_{2}^{}$, ..., $ \beta_{2n}^{}$. Докажите, что

$\displaystyle \beta_{1}^{}$ + $\displaystyle \beta_{3}^{}$ +...+ $\displaystyle \beta_{2n-1}^{}$ = $\displaystyle \beta_{2}^{}$ + $\displaystyle \beta_{4}^{}$ +...+ $\displaystyle \beta_{2n}^{}$.

Верно ли обратное?

Прислать комментарий     Решение


Задача 64981

Темы:   [ Выпуклые многоугольники ]
[ Вписанные и описанные многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Выпуклый n-угольник P, где  n > 3,  разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Каковы возможные значения n, если n-угольник описанный?

Прислать комментарий     Решение

Задача 65024

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Птолемея ]
[ Теоремы Чевы и Менелая ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Шестиугольник ABCDEF вписан в окружность. Известно, что  AB·CF = 2BC·FACD·EB = 2DE·BCEF·AD = 2FA·DE.
Докажите, что прямые AD, BE и CF пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116135

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Противоположные стороны выпуклого шестиугольника параллельны. Hазовём высотой такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник.

Прислать комментарий     Решение

Задача 56729

 [Теорема Брианшона]
Темы:   [ Радикальная ось ]
[ Вписанные и описанные многоугольники ]
[ Шестиугольники ]
Сложность: 6
Классы: 8,9,10

Докажите, что диагонали AD, BE и CF описанного шестиугольника ABCDEF пересекаются в одной точке (Брианшон).
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 73]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .