ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости проведены  n > 2  прямых общего положения (то есть никакие две прямые не параллельны и никакие три не пересекаются в одной точке). Эти прямые разрезали плоскость на несколько частей. Какое
  а) наименьшее;
  б) наибольшее
количество углов может быть среди этих частей?

   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 829]      



Задача 65019

Темы:   [ Хорды и секущие (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Угол между касательной и хордой ]
[ Точка Лемуана ]
Сложность: 4
Классы: 8,9,10,11

На хорде AC окружности ω выбрали точку B. На отрезках AB и BC как на диаметрах построили окружности ω1 и ω2 с центрами O1 и O2, которые пересекают ω второй раз в точках D и E соответственно. Лучи O1D и O2E пересекаются в точке F. Лучи AD и CE пересекаются в точке G.
Докажите, что прямая FG проходит через середину AC.

Прислать комментарий     Решение

Задача 65044

Темы:   [ Плоскость, разрезанная прямыми ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

На плоскости проведены  n > 2  прямых общего положения (то есть никакие две прямые не параллельны и никакие три не пересекаются в одной точке). Эти прямые разрезали плоскость на несколько частей. Какое
  а) наименьшее;
  б) наибольшее
количество углов может быть среди этих частей?

Прислать комментарий     Решение

Задача 65047

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Три точки, лежащие на одной прямой ]
[ Проективная геометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

На окружности с диаметром AC выбрана произвольная точка B, отличная от A и C. Пусть M, N – середины хорд AB, BC, а P, Q – середины меньших дуг, стягиваемых этими хордами. Прямые AQ и BC пересекаются в точке K, а прямые CP и AB – в точке L.
Докажите, что прямые MQ, NP и KL пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65114

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

В неравнобедренном треугольнике ABC провели биссектрисы угла ABC и угла, смежного с ним. Они пересекли прямую AC в точках B1 и B2 соответственно. Из точек B1 и B2 провели касательные к окружности ω, вписанной в треугольник ABC, отличные от прямой AC. Они касаются ω в точках K1 и K2 соответственно. Докажите, что точки B, K1 и K2 лежат на одной прямой.

Прислать комментарий     Решение

Задача 66273

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
[ Проективные преобразования прямой ]
Сложность: 4
Классы: 9,10,11

Дан треугольник ABC. Точка K – основание биссектрисы внешнего угла A. Точка M – середина дуги AC описанной окружности. Точка N выбрана на биссектрисе угла C так, что  AN || BM.  Докажите, что точки M, N и K лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .