ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||
Версия для печати
Убрать все задачи Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма времён, необходимых каждому из гномов на путь от своего дома до этого места (по прямой), была наименьшей? Доказать, что число штатов США с нечётным числом соседей чётно.
На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу в точке D так, что AD : DB = 1 : 4. Найдите высоту, опущенную из вершины C прямого угла на гипотенузу, если известно, что катет BC равен 10.
Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков. Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды. У треугольника известны стороны a = 2, b = 3 и
площадь S =
Угол при вершине равнобедренного треугольника равен 40o. Одна из боковых сторон служит диаметром полуокружности, которая делится другими сторонами на три части. Найдите эти части.
Окружность с центром, расположенным внутри прямого угла, касается одной стороны угла, пересекает другую сторону в точках A и B и биссектрису угла в точках C и D. AB = В треугольнике ABC проведены высоты AA1, BB1
и CC1. Пусть
A1A2, B1B2 и C1C2 — диаметры окружности
девяти точек треугольника ABC. Докажите, что прямые AA2, BB2
и CC2 пересекаются в одной точке (или параллельны).
В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1 пересекаются в одной точке. |
Страница: << 1 2 3 4 [Всего задач: 17]
В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1 пересекаются в одной точке.
Треугольник ABC (AB > BC) вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.
Страница: << 1 2 3 4 [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке