ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Обязательно ли равны два равнобедренных треугольника, у которых равны боковые стороны и радиусы вписанных окружностей? а) Докажите, что центр масс существует и единствен для любой
системы точек.
Пусть an – число решений уравнения x1 + ... + xk = n в целых неотрицательных числах и F(x) – производящая функция последовательности an. В комнате находятся 85 воздушных шаров — красных и синих. Известно, что: 1) по крайней мере один из шаров красный; 2) из каждой произвольно выбранной пары шаров по крайней мере один синий. Сколько в комнате красных шаров? Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками. В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра. Встречается ли в треугольнике Паскаля число 1999? Около данного круга опишите равнобедренный прямоугольный треугольник.
В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол. Докажите, что при a, b, c > 0 имеет место неравенство Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке. Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет). Золотоискатель Джек добыл 9 кг золотого песка. Сможет ли он за три взвешивания отмерить 2 кг песка с помощью чашечных весов: а) с двумя гирями — 200 г и 50 г; б) с одной гирей 200 г? Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F. |
Страница: 1 2 3 >> [Всего задач: 12]
Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка [1, 2] и заставляет программу решать уравнение 3x + A = 0. Найдите вероятность того, что корень этого уравнения меньше чем –0,4.
Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника.
Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F.
В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол.
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке