ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Bong-Gyun Koh

Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение  5 ± 1,  а если на доске были числа 1, 2 и 3, то подойдёт выражение  (2 ± 0,5) ± 0,5.  Возможно ли составить необходимое выражение, если на доске были написаны
  а) числа 1, 2, 4;
  б) любые 100 различных действительных чисел?

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1027]      



Задача 64706

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла (ГМТ) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?

Прислать комментарий     Решение

Задача 64843

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Даны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.)

Прислать комментарий     Решение

Задача 65466

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Bong-Gyun Koh

Петя увидел на доске несколько различных чисел и решил составить выражение, среди значений которого все эти числа есть, а других нет. Составляя выражение, Петя может использовать какие угодно числа, особый знак "±", а также обычные знаки "+", "–", "×" и скобки. Значения составленного выражения он вычисляет, выбирая для каждого знака "±" либо "+", либо "–" во всех возможных комбинациях. Например, если на доске были числа 4 и 6, подойдёт выражение  5 ± 1,  а если на доске были числа 1, 2 и 3, то подойдёт выражение  (2 ± 0,5) ± 0,5.  Возможно ли составить необходимое выражение, если на доске были написаны
  а) числа 1, 2, 4;
  б) любые 100 различных действительных чисел?

Прислать комментарий     Решение

Задача 65826

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 8,9,10,11

По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

Прислать комментарий     Решение

Задача 65851

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Вписанный угол равен половине центрального ]
[ Касающиеся окружности ]
Сложность: 4-
Классы: 8,9,10

Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник P и такая точка A на его границе, что каждая прямая, проходящая через точку A, делит периметр многоугольника P на два куска равной длины?

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .