ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан квадратный лист бумаги со стороной 2016. Можно ли, согнув его не более десяти раз, построить отрезок длины 1?

   Решение

Задачи

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 829]      



Задача 64392

Темы:   [ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9

Пусть P – произвольная точка на дуге AC описанной окружности треугольника ABC, не содержащей точки B. Биссектриса угла APB пересекает биссектрису угла BAC в точке Pa; биссектриса угла CPB пересекает биссектрису угла BCA в точке Pc. Докажите, что для всех точек P центры описанных окружностей треугольников PPaPc лежат на одной прямой.

Прислать комментарий     Решение

Задача 64887

Темы:   [ Четырехугольная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Три точки, лежащие на одной прямой ]
[ Проективные преобразования пространства ]
[ Касательные к сферам ]
Сложность: 4
Классы: 11

Автор: Нилов Ф.

Дана описанная четырёхугольная пирамида ABCDS. Противоположные стороны основания пересекаются в точках P и Q, причём точки A и B лежат на отрезках PD и PC. Вписанная сфера касается боковых граней ABS и BCS в точках K и L. Докажите, что если прямые PK и QL пересекаются, то точка касания сферы и основания лежит на отрезке BD.

Прислать комментарий     Решение

Задача 65381

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Композиции симметрий ]
Сложность: 4
Классы: 10,11

Автор: Соколов А.

Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65646

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Необычные построения (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9,10

Дан квадратный лист бумаги со стороной 2016. Можно ли, согнув его не более десяти раз, построить отрезок длины 1?

Прислать комментарий     Решение

Задача 65712

Темы:   [ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 9,10,11

Дан выпуклый четырёхугольник ABCD, в котором  ∠DAB = 90°.  Пусть M – середина стороны BC. Оказалось. что  ∠ADC = ∠BAM.
Докажите, что  ∠ADB = ∠CAM.

Прислать комментарий     Решение

Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .