ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья С. Белого "Разноцветная математика" Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В однокруговом хоккейном турнире принимало участие 2016 команд. По регламенту турнира за победу даётся 3 очка, за поражение 0 очков, а в случае ничьей назначается дополнительное время, победитель которого получает 2 очка, а проигравший – 1 очко. По окончании турнира Остапу Бендеру сообщили количество очков, набранных каждой командой, на основании чего он сделал вывод, что не менее N матчей закончились дополнительным временем. Найдите наибольшее возможное значение N. Решение |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 161]
В однокруговом хоккейном турнире принимало участие 2016 команд. По регламенту турнира за победу даётся 3 очка, за поражение 0 очков, а в случае ничьей назначается дополнительное время, победитель которого получает 2 очка, а проигравший – 1 очко. По окончании турнира Остапу Бендеру сообщили количество очков, набранных каждой командой, на основании чего он сделал вывод, что не менее N матчей закончились дополнительным временем. Найдите наибольшее возможное значение N.
В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку красивой, если в соседних с ней по стороне клетках стоит чётное число фишек.
Ширина реки один километр. Это по определению означает, что от любой точки
каждого берега можно доплыть до противоположного берега, проплыв не больше
километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до
любого из берегов было бы не больше:
Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81n.
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 161] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|