ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник ABCD – вписанный,  AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что  MN = BM + ND.

   Решение

Задачи

Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 2247]      



Задача 65844

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 9,10,11

Четырёхугольник ABCD – вписанный,  AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что  MN = BM + ND.

Прислать комментарий     Решение

Задача 65863

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10

Даны параллелограмм ABCD и такая точка K, что  AK = BD.  Точка M – середина CK. Докажите, что  ∠BMD = 90°.

Прислать комментарий     Решение

Задача 65979

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 6,7

Дан квадрат ABCD. На продолжении диагонали AC за точку C отмечена такая точка K, что  BK = AC.  Найдите угол BKC.

Прислать комментарий     Решение

Задача 66136

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
[ Перпендикулярные прямые ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Докажите, что прямая O1O2 перпендикулярна BC.

Прислать комментарий     Решение

Задача 66141

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Медиана, проведенная к гипотенузе ]
[ Угол между касательной и хордой ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9,10

Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов.

Прислать комментарий     Решение

Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .