ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан квадрат ABCD. Первая окружность касается сторон угла A, вторая – сторон угла B, причём сумма диаметров окружностей равна стороне квадрата. Докажите, что одна из общих касательных этих окружностей пересекает сторону AB в её середине.

   Решение

Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 2247]      



Задача 66299

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD, в котором  AB = BC  и  AD = CD,  вписан в окружность. Точка M лежит на меньшей дуге CD этой окружности. Прямые BM и CD пересекаются в точке P, а прямые AM и BD – в точке Q. Докажите, что  PQ || AC.

Прислать комментарий     Решение

Задача 66303

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Общая касательная к двум окружностям ]
[ Признаки равенства прямоугольных треугольников ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Дан квадрат ABCD. Первая окружность касается сторон угла A, вторая – сторон угла B, причём сумма диаметров окружностей равна стороне квадрата. Докажите, что одна из общих касательных этих окружностей пересекает сторону AB в её середине.

Прислать комментарий     Решение

Задача 66349

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 9,10,11

В четырёхугольнике ABCD  AB = ВС = m,  ∠АВС = ∠АDС = 120°.  Найдите BD.

Прислать комментарий     Решение

Задача 66718

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10,11

В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что  $CN = AB$.  Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.

Прислать комментарий     Решение

Задача 67072

Темы:   [ Четырехугольники (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Юран А.Ю.

Докажите, что из любого выпуклого четырёхугольника можно вырезать три его копии вдвое меньшего размера.

Прислать комментарий     Решение

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .