ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Докажите, что для любого числа p > 2 найдется такое число $ \beta$, что

$\displaystyle \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+
\sqrt{2+p}}}}}_{n~\mbox{\scriptsize {радикалов}}}^{}\,$ = $\displaystyle \beta^{2^n}_{}$ - $\displaystyle \beta^{-2^n}_{}$.


Вниз   Решение


Автор: Фольклор

На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну точку внутри него). Как это сделать?

ВверхВниз   Решение


Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

ВверхВниз   Решение


На доске n×n расставлено  n – 1  фишек так, что никакие две из них не стоят на соседних (по стороне) клетках.
Докажите, что одну из них можно передвинуть на соседнюю клетку так, чтобы снова никакие две фишки не стояли на соседних клетках.

ВверхВниз   Решение


На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.

ВверхВниз   Решение


Может ли быть так, что   а)  σ(n) > 3n;   б)  σ(n) > 100n?

ВверхВниз   Решение


Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали?

ВверхВниз   Решение


Какое число нужно вычесть из числителя дроби 537/463 и прибавить к знаменателю, чтобы после сокращения получить 1/9?

ВверхВниз   Решение


В равнобедренном треугольнике ABC высоты AD и CE, опущенные на боковые стороны, образуют угол AMC, равный 48°. Найдите углы треугольника ABC.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD точки E и F являются серединами сторон BC и CD соответственно. Отрезки AE, AF и EF делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите высоту пирамиды.

ВверхВниз   Решение


Найдите наибольший член последовательности $x_n = \frac{n-1}{n^2+1}$.

ВверхВниз   Решение


Угол при вершине B равнобедренного треугольника ABC равен 108°. Перпендикуляр к биссектрисе AD этого треугольника, проходящий через точку D, пересекает сторону AC в точке E. Докажите, что  DE = BD.

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды с высотой h и углом β боковой грани с плоскостью основания.

ВверхВниз   Решение


В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

ВверхВниз   Решение


Автор: Tran Quang Hung

Вокруг квадрата ABCD описана окружность. Точка P лежит на дуге CD этой окружности, не содержащей других вершин квадрата. Прямые PA, PB пересекают диагонали BD, AC соответственно в точках K, L. Точки M, N – проекции K, L соответственно на CD, а Q – точка пересечения прямых KN и ML. Докажите, что прямая PQ делит отрезок AB пополам.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]      



Задача 116890

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Четыре точки, лежащие на одной окружности ]
[ Замечательное свойство трапеции ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В треугольнике ABC:  ∠B = 22,5°,  ∠C = 45°.  Докажите, что высота АН, медиана BM и биссектриса CL пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108188

Темы:   [ Векторы помогают решить задачу ]
[ Отношение, в котором биссектриса делит сторону ]
[ Разложение вектора по двум неколлинеарным векторам ]
[ Скалярное произведение. Соотношения ]
[ Замечательное свойство трапеции ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9

В треугольнике ABC известно, что AA1 – медиана, AA2 – биссектриса, K – такая точка на AA1 , для которой KA2 || AC . Докажите, что AA2 KC .
Прислать комментарий     Решение


Задача 66305

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Гомотетия помогает решить задачу ]
[ Замечательное свойство трапеции ]
Сложность: 4
Классы: 8,9

Автор: Tran Quang Hung

Вокруг квадрата ABCD описана окружность. Точка P лежит на дуге CD этой окружности, не содержащей других вершин квадрата. Прямые PA, PB пересекают диагонали BD, AC соответственно в точках K, L. Точки M, N – проекции K, L соответственно на CD, а Q – точка пересечения прямых KN и ML. Докажите, что прямая PQ делит отрезок AB пополам.

Прислать комментарий     Решение

Задача 66145

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Замечательное свойство трапеции ]
Сложность: 4+
Классы: 9,10,11

Вписанная окружность неравнобедренного треугольника ABC касается сторон AB, BC и ABC в точках C1, A1 и B1 соответственно. Описанная окружность треугольника A1BC1 пересекает прямые B1A1 и B1C1 в точках A0 и C0 соответственно. Докажите, что ортоцентр H треугольника A0BC0, центр I вписанной окружности треугольника ABC и середина M стороны AC лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .