ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Простым или составным является число 2002 – 399?

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 965]      



Задача 66083

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Квадратный трёхчлен  x² + bx + c  имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?

Прислать комментарий     Решение

Задача 66416

Тема:   [ Формулы сокращенного умножения ]
Сложность: 3
Классы: 7,8

Автор: Фольклор

Простым или составным является число 2002 – 399?
Прислать комментарий     Решение


Задача 66484

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?
Прислать комментарий     Решение


Задача 66562

Тема:   [ Многочлены (прочее) ]
Сложность: 3
Классы: 9,10,11

Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$.
Прислать комментарий     Решение


Задача 66764

Тема:   [ Разложение на множители ]
Сложность: 3
Классы: 8,9,10,11

Несократимая дробь $\frac{a}{b}$ такова, что $$ \frac{a}{b}=\frac{999}{1999}+\frac{999}{1999}\cdot \frac{998}{1998}+\frac{999}{1999}\cdot\frac{998}{1998}\cdot \frac{997}{1997}+\ldots + \frac{999}{1999}\cdot \frac{998}{1998}\cdot \ldots \cdot \frac{1}{1001}. $$ Найдите $a$ и $b$.
Прислать комментарий     Решение


Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .