ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1659]      



Задача 66364

Тема:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 7,8,9

Из вершины прямого угла треугольника ABC проведена медиана СМ. Окружность, вписанная в треугольник САМ, касается СМ в её середине. Найдите угол ВАС.

Прислать комментарий     Решение

Задача 66408

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Теорема синусов ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Мухин Д.Г.

В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.
Прислать комментарий     Решение


Задача 66548

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 6,7

Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.

Прислать комментарий     Решение


Задача 66655

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что

а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке;

б) если $CN$ – высота, то $ST$ проходит через середину $ML$.

Прислать комментарий     Решение

Задача 66666

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1659]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .