ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Алгебраические неравенства (прочее)
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$. Решение |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 177]
По случаю начала зимних каникул все мальчики из 8 "В" пошли в тир. Известно, что в 8 "В" n мальчиков. В тире, куда пришли ребята, n мишеней. Каждый из мальчиков случайным образом выбирает себе мишень, при этом некоторые ребята могли выбрать одну и ту же мишень. После этого все одновременно делают залп по своим мишеням. Известно, что каждый из мальчиков попал в свою мишень. Мишень считается поражённой, если в нее попал хоть один мальчик.
Пусть a – положительный корень уравнения x2017 – x – 1 = 0, а b – положительный корень уравнения y4034 – y = 3a.
Докажите, что для любых натуральных a1, a2, ..., ak таких, что , у уравнения не больше чем a1a2...ak решений в натуральных числах. ([x] – целая часть числа x, т. е. наибольшее целое число, не превосходящее x.)
Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$. ([$x$] – целая часть числа $x$.)
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 177] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|