ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите угол между прямой MN и плоскостью NKL . Составьте параметрические уравнения прямой пересечения плоскостей 2x - y - 3z + 5 = 0 и x + y - 2 = 0 . Сторона основания и высота правильной шестиугольной пирамиды пирамиды равны a . Найдите радиус сферы, вписанной в пирамиду. Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды. Пусть x1 < x2 < ... < xn – действительные числа. Постройте многочлены f1(x), f2(x), ..., fn(x) степени n – 1, которые удовлетворяют условиям fi(xi) = 1 и fi(xj) = 0 при i ≠ j (i, j = 1, 2, ..., n). Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) \, dx.$$ Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел: X [p+1]< X [p+2]>X [p+3]<...> X[p+k]. Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых. |
Страница: 1 2 3 >> [Всего задач: 12]
Известно, что в некоторую призму можно вписать сферу. Найдите площадь её боковой поверхности, если площадь основания равна S.
Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.
В основании призмы ABCDA₁B₁C₁D₁ лежит прямоугольник ABCD. Острые углы D₁DA и D₁DC равны между собой, угол между
Все грани призмы ABCDA₁B₁C₁D₁ касаются некоторого шара. Основанием призмы служит квадрат ABCD со стороной, равной 5. Угол C₁CD ─ острый, а ∠C₁CB = arctg ⁵⁄₃. Найдите ∠C₁CD, угол между боковым ребром и плоскостью основания призмы, а также расстояние от точки C до точки касания шара с плоскостью AA₁D.
В основании призмы ABCDA₁B₁C₁D₁ лежит параллелограмм ABCD, AB = 8, а ∠BAD = π/3. Острые углы A₁AB и A₁AD равны между
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке