ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассматриваются все призмы, в основании которых лежит выпуклый 2015-угольник. Найдите двугранные углы пирамиды ABCD , все ребра которой равны между собой. Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9. По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
В данную окружность впишите прямоугольный треугольник, катеты которого проходили бы через две данные точки внутри окружности.
Можно ли расположить на плоскости 1968 отрезков так, чтобы каждый из них обоими концами упирался строго внутрь других отрезков? а) Выпуклый пятиугольник разбили непересекающимися диагоналями на три треугольника. Могут ли точки пересечения медиан этих треугольников лежать на одной прямой? б) Тот же вопрос для невыпуклого пятиугольника. |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]
а) Выпуклый пятиугольник разбили непересекающимися диагоналями на три треугольника. Могут ли точки пересечения медиан этих треугольников лежать на одной прямой? б) Тот же вопрос для невыпуклого пятиугольника.
Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.
Озеро имеет форму невыпуклого
Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырёхугольников?
Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке