Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольнике ABC, площадь которого равна 1, на медиане BK взята точка M, причём  MK = ¼ BK.  Прямая AM пересекает сторону BC в точке L.
Найдите площадь треугольника ALC.

Вниз   Решение


Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o .

ВверхВниз   Решение


Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

ВверхВниз   Решение


Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.

ВверхВниз   Решение


Через точку M, лежащую внутри параллелограмма ABCD, проведены прямые PR и QS, параллельные сторонам BC и AB (точки P, Q, R и S лежат на сторонах AB, BC, CD и DA соответственно). Докажите, что прямые BS, PD и MC пересекаются в одной точке.

ВверхВниз   Решение


Автор: Уткин А.

В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.

Вверх   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 330]      



Задача 52471

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если известно, что CD = 8.

Прислать комментарий     Решение


Задача 54813

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Отрезки, соединяющие основания высот остроугольного треугольника, равны 5, 12 и 13. Найдите радиус описанной около треугольника окружности.
Прислать комментарий     Решение


Задача 55502

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Описанные четырехугольники ]
Сложность: 4
Классы: 8,9

Найдите отношение сторон прямоугольного треугольника, если известно, что одна половина гипотенузы (от вершины до середины гипотенузы) видна из центра вписанной окружности под прямым углом.

Прислать комментарий     Решение


Задача 66925

Темы:   [ Вневписанные окружности ]
[ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9,10,11

Автор: Уткин А.

В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.
Прислать комментарий     Решение


Задача 78103

Темы:   [ Четырехугольники (прочее) ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 10,11

В выпуклом четырёхугольнике ABCD точка M – середина диагонали AC, точка N – середина диагонали BD. Прямая MN пересекает стороны AB и CD в точках M' и N'. Доказать, что если  MM' = NN',  то  BC || AD.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .