Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
  а) меньше 2 для любого остроугольного треугольника;
  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg 4/3;  а среди треугольников с тупым углом, меньшим  2 arctg 4/3,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

Вниз   Решение


Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что  KS || AC  и  LT || AB.  Докажите, что точки P, Q, S и T лежат на одной окружности.

ВверхВниз   Решение


В Старой Калитве живет 50 школьников, а в Средних Болтаях — 100 школьников. Где нужно построить школу, чтобы сумма расстояний, проходимых всеми школьниками, была наименьшей?

ВверхВниз   Решение


Около окружности описана равнобедренная трапеция ABCD. Меньшее основание BC касается окружности в точке M, боковая сторона CD – в точке N. Высота CE пересекает отрезок MN в точке P, причём  MP : PN = 2.  Найдите отношение  AD : BC.

ВверхВниз   Решение


Диагонали вписанно-описанного четырехугольника $ABCD$ пересекаются в точке $L$. Даны три отрезка, равные $AL$, $BL$, $CL$. Восстановите четырехугольник с помощью циркуля и линейки.

Вверх   Решение

Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 401]      



Задача 66933

Темы:   [ Описанные четырехугольники ]
[ Теорема Птолемея ]
[ Отношение, в котором биссектриса делит сторону ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Построения с помощью вычислений ]
Сложность: 5
Классы: 9,10,11

Диагонали вписанно-описанного четырехугольника $ABCD$ пересекаются в точке $L$. Даны три отрезка, равные $AL$, $BL$, $CL$. Восстановите четырехугольник с помощью циркуля и линейки.
Прислать комментарий     Решение


Задача 52919

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу описанной окружности равно h. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 52920

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

В треугольнике ABC точка P — центр вписанной окружности, а точка Q — центр окружности, описанной около треугольника ABC. Прямая PQ перпендикулярна биссектрисе AP треугольника ABC. Известно, что величина угла PAQ равна $ \alpha$. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 52921

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу вписанной окружности равно k. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 52922

Темы:   [ Формула Эйлера ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5
Классы: 8,9

В треугольнике PQR точка A — центр вписанной окружности, а точка B — центр окружности, описанной около треугольника PQR. Прямая AB перпендикулярна биссектрисе QA треугольника PQR. Известно, что угол ABQ равен $ \beta$. Найдите углы треугольника PQR.

Прислать комментарий     Решение


Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .