ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
На сколько частей делят пространство n плоскостей,
проходящих через одну точку, если никакие три не имеют общей
прямой?
Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.
Основание треугольника на 4 меньше высоты, а площадь треугольника равна 96. Найдите основание и высоту треугольника.
В равнобедренном треугольнике ABC ∠B = arctg 8/15. Окружность радиуса 1, вписанная в угол C, касается стороны CB в точке M и отсекает от основания отрезок KE. Известно, что MB = 15/8. Найдите площадь треугольника KMB, если известно, что точки A, K, E, B следуют на основании AB в указанном порядке. Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре? Найдите геометрическое место таких точек X, что
касательные, проведенные из X к данной окружности, имеют
данную длину.
Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор. 3 равные окружности с центрами O1, O2, O3 пересекаются в данной точке. A1, A2, A3 — остальные точки пересечения. Доказать, что треугольники O1O2O3 и A1A2A3 равны. Шеренга солдат-новобранцев стояла лицом к сержанту. По команде «налево» некоторые повернулись налево, остальные – направо. Оказалось, что в затылок соседу смотрит в шесть раз больше солдат, чем в лицо. Затем по команде «кругом» все развернулись в противоположную сторону. Теперь в затылок соседу стали смотреть в семь раз больше солдат, чем в лицо. Сколько солдат в шеренге? |
Страница: 1 2 >> [Всего задач: 7]
На столе лежат две кучки камней: в
первой кучке 10 камней, а во
второй - 15. За ход
разрешается разделить любую кучку
на две меньшие. Проигрывает тот, кто
не сможет делать ход. Может ли
выиграть второй игрок?
Дан отрезок [0, 1]. За ход разрешается разбить любой из имеющихся отрезков точкой на два новых отрезка и записать на доску произведение длин этих двух новых отрезков.
Квадратный трёхчлен f(x) разрешается заменить на один из
трёхчленов
Шеренга солдат-новобранцев стояла лицом к сержанту. По команде «налево» некоторые повернулись налево, остальные – направо. Оказалось, что в затылок соседу смотрит в шесть раз больше солдат, чем в лицо. Затем по команде «кругом» все развернулись в противоположную сторону. Теперь в затылок соседу стали смотреть в семь раз больше солдат, чем в лицо. Сколько солдат в шеренге?
На острове живут рыцари, лжецы и подпевалы; каждый знает про всех, кто из них кто. В ряд построили всех 2018 жителей острова и попросили каждого ответить "Да" или "Нет" на вопрос: "На острове рыцарей больше, чем лжецов?". Жители отвечали по очереди и так, что их слышали остальные. Рыцари отвечали правду, лжецы лгали. Каждый подпевала отвечал так же, как большинство ответивших до него, а если ответов "Да" и "Нет" было поровну, давал любой из этих ответов. Оказалось, что ответов "Да" было ровно 1009. Какое наибольшее число подпевал могло быть среди жителей острова?
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке