ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выпуклый четырехугольник $ABCD$ таков, что $\angle BAD = 2 \angle BCD$ и $AB = AD$. Пусть $P$ – такая точка, что $ABCP$ – параллелограмм. Докажите, что $CP=DP$. Решение |
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 563]
а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке; б) если $CN$ – высота, то $ST$ проходит через середину $ML$.
У края биллиарда, имеющего форму правильного 2n-угольника, стоит шар. Как надо пустить шар от борта, чтобы он, отразившись последовательно от всех бортов, вернулся в ту же точку? (При отражении углы падения и отражения равны.) Доказать, что при этом длина пути шара не зависит от выбора начальной точки.
В прямоугольном бильярде размером p×2q, где p и q – нечётные числа, сделаны лузы в каждом углу и в середине каждой стороны длины 2q. Из угла выпущен шарик под углом 45° к стороне. Доказать, что шарик обязательно попадёт в одну из средних луз.
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|