ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно четыре отмеченных точки, а через каждую отмеченную точку проходят ровно четыре окружности?

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 149]      



Задача 67125

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пересекающиеся окружности ]
[ Стереографическая проекция ]
[ Правильные многоугольники ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно пять отмеченных точек, а через каждую отмеченную точку проходят ровно пять окружностей?
Прислать комментарий     Решение


Задача 67132

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пересекающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно четыре отмеченных точки, а через каждую отмеченную точку проходят ровно четыре окружности?
Прислать комментарий     Решение


Задача 108126

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
[ Признаки подобия ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Пусть описанные окружности S1 и S2 треугольников ABO и CDO второй раз пересекаются в точке K. Прямые, проходящие через точку O параллельно прямым AB и CD, вторично пересекают S1 и S2 в точках L и M соответственно. На отрезках OL и OM выбраны соответственно точки P и Q, причём  OP : PL = MQ : QO.  Докажите, что точки O, K, P, Q лежат на одной окружности.

Прислать комментарий     Решение

Задача 108189

Темы:   [ Теорема синусов ]
[ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10

Автор: Сонкин М.

Две окружности радиусов R и r касаются прямой l в точках A и B и пересекаются в точках C и D . Докажите, что радиус окружности, описанной около треугольника ABC не зависит от длины отрезка AB .
Прислать комментарий     Решение


Задача 108190

Темы:   [ Симметрия помогает решить задачу ]
[ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружности S1 и S2 с центрами O1 и O2 пересекаются в точках A и B . Окружность, проходящая через точки O1 , O2 и A , вторично пересекает окружность S1 в точке D , окружность S2 – в точке E , а прямую AB – в точке C . Докажите, что CD=CB=CE .
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .