ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.
Пусть в выпуклом четырёхугольнике ABCD нет параллельных сторон. Обозначим через E и F точки пересечения прямых AB и DC, BC и AD соответственно (точка A лежит на отрезке BE, а точка C — на отрезке BF). Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда ED + BF = DF + BE.
В прямоугольном треугольнике проведена высота из вершины прямого угла. На этой высоте как на диаметре построена окружность. Известно, что эта окружность высекает на катетах отрезки, равные 12 и 18. Найдите катеты.
Прямоугольники ABCD и DEFG расположены так, что точка D лежит на отрезке BF, а точки B, C, E, F лежат на одной окружности (см. рисунок). Докажите, что ∠ACE=∠CEG. Пусть f(x)=x2+3x+2. Вычислите (1−2f(1))(1−2f(2))(1−2f(3))…(1−2f(2019)). В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь). В параллелограмме ABCD известно, что AB = 4, AD = 6. Биссектриса угла BAD пересекает сторону BC в точке M, при этом AM = 4 В остроугольном треугольнике ABC медиана CM и высота AH пересекаются в точке O. Вне треугольника отмечена точка D так, что AOCD – параллелограмм. Чему равно BD, если известно, что MO=a, OC=b? Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника. Точка D лежит на основании AB равнобедренного тупоугольного треугольника ABC так, что отрезок AD равен радиусу описанной окружности треугольника BCD. Найдите угол ACD. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 352]
Докажите равенство треугольников по углу, биссектрисе и стороне, исходящим из вершины этого угла.
Докажите, что если две стороны и угол против меньшей из них одного треугольника соответственно равны двум сторонам и углу против меньшей из них другого треугольника, то треугольники могут быть как равными, так и не равными.
Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что AO = BO.
В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. На отрезках AD и CD построены равносторонние треугольники AED и CFD, так что точка E лежит в той же полуплоскости относительно прямой AB, что и C, а точка F лежит в той же полуплоскости относительно прямой CD, что и B. Прямая EF пересекает катет AC в точке L. Докажите, что FL=CL+LD.
Точка D лежит на основании AB равнобедренного тупоугольного треугольника ABC так, что отрезок AD равен радиусу описанной окружности треугольника BCD. Найдите угол ACD.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке