Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

Вниз   Решение


Пусть в выпуклом четырёхугольнике ABCD нет параллельных сторон. Обозначим через E и F точки пересечения прямых AB и DC, BC и AD соответственно (точка A лежит на отрезке BE, а точка C — на отрезке BF). Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда ED + BF = DF + BE.

ВверхВниз   Решение


В прямоугольном треугольнике проведена высота из вершины прямого угла. На этой высоте как на диаметре построена окружность. Известно, что эта окружность высекает на катетах отрезки, равные 12 и 18. Найдите катеты.

ВверхВниз   Решение


Прямоугольники ABCD и DEFG расположены так, что точка D лежит на отрезке BF, а точки B, C, E, F лежат на одной окружности (см. рисунок). Докажите, что ACE=CEG.

ВверхВниз   Решение


Пусть f(x)=x2+3x+2. Вычислите (12f(1))(12f(2))(12f(3))(12f(2019)).

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).

ВверхВниз   Решение


В параллелограмме ABCD известно, что  AB = 4,  AD = 6.  Биссектриса угла BAD пересекает сторону BC в точке M, при этом  AM = 4.
Найдите площадь четырёхугольника AMCD.

ВверхВниз   Решение


Автор: Попов Л. А.

В остроугольном треугольнике ABC медиана CM и высота AH пересекаются в точке O. Вне треугольника отмечена точка D так, что AOCD – параллелограмм. Чему равно BD, если известно, что MO=a, OC=b?

ВверхВниз   Решение


Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.

ВверхВниз   Решение


Точка D лежит на основании AB равнобедренного тупоугольного треугольника ABC так, что отрезок AD равен радиусу описанной окружности треугольника BCD. Найдите угол ACD.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 352]      



Задача 53337

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Докажите равенство треугольников по углу, биссектрисе и стороне, исходящим из вершины этого угла.

Прислать комментарий     Решение

Задача 53350

Темы:   [ Равные треугольники. Признаки равенства ]
[ Прямоугольный треугольник с углом в 30 ]
Сложность: 3
Классы: 8,9

Докажите, что если две стороны и угол против меньшей из них одного треугольника соответственно равны двум сторонам и углу против меньшей из них другого треугольника, то треугольники могут быть как равными, так и не равными.

Прислать комментарий     Решение

Задача 53405

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Периметр треугольника ]
Сложность: 3
Классы: 8,9

Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что  AO = BO.

Прислать комментарий     Решение

Задача 67088

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 7,8,9

В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. На отрезках AD и CD построены равносторонние треугольники AED и CFD, так что точка E лежит в той же полуплоскости относительно прямой AB, что и C, а точка F лежит в той же полуплоскости относительно прямой CD, что и B. Прямая EF пересекает катет AC в точке L. Докажите, что FL=CL+LD.
Прислать комментарий     Решение


Задача 67230

Темы:   [ Вспомогательные равные треугольники ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9,10,11

Точка D лежит на основании AB равнобедренного тупоугольного треугольника ABC так, что отрезок AD равен радиусу описанной окружности треугольника BCD. Найдите угол ACD.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .