Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 416]
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли целое $n>1$, удовлетворяющее неравенству
$$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$
(Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
|
|
Сложность: 4- Классы: 8,9,10
|
Предположим, что в каждом номере нашего журнала в задачнике «Кванта» будет пять задач по математике. Обозначим через
f(x, y) номер первой из задач
x-го номера за
y-й год. Напишите общую формулу для
f(x, y), где
1 £ x £ 12 и
1970 £ x £ 1989. Решите уравнение
f(x, y) = y.
Например, f(6, 1970) = 26. Начиная с 1989 года, количество задач стало менее предсказуемым. Например, в последние годы в половине номеров по 5 задач, а в других номерах по 10. Да и самих номеров журнала сейчас уже не 12, а 6.
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли такое число h, что ни для какого натурального числа n число [h·1969n] не делится на [h·1969n–1]?
|
|
Сложность: 4- Классы: 8,9,10
|
Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z выполнены тождества: x*x = 0 и x*(y*z) = (x*y) + z.
|
|
Сложность: 4- Классы: 9,10,11
|
В числе a = 0,12457... n-я цифра после запятой равна цифре слева от запятой в числе Докажите, что α –
иррациональное число.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 416]