ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли целое $n>1$, удовлетворяющее неравенству $$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$ (Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 416]      



Задача 67295

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11

Существует ли целое $n>1$, удовлетворяющее неравенству $$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$ (Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
Прислать комментарий     Решение


Задача 73561

Тема:   [ Характеристические свойства и рекуррентные соотношения ]
Сложность: 4-
Классы: 8,9,10

Предположим, что в каждом номере нашего журнала в задачнике «Кванта» будет пять задач по математике. Обозначим через f(x, y) номер первой из задач x-го номера за y год. Напишите общую формулу для f(x, y), где 1 £ x £ 12 и 1970 £ x £ 1989. Решите уравнение f(x, y) = y.

Например, f(6, 1970) = 26. Начиная с 1989 года, количество задач стало менее предсказуемым. Например, в последние годы в половине номеров по 5 задач, а в других номерах по 10. Да и самих номеров журнала сейчас уже не 12, а 6.
Прислать комментарий     Решение


Задача 78705

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Существует ли такое число h, что ни для какого натурального числа n число  [h·1969n] не делится на [h·1969n–1]?

Прислать комментарий     Решение

Задача 107987

Темы:   [ Функции нескольких переменных ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z  выполнены тождества:  x*x = 0  и  x*(y*z) = (x*y) + z.

Прислать комментарий     Решение

Задача 109196

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 4-
Классы: 9,10,11

В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .