ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В клуб любителей гиперграфов в начале года записались $n$ попарно незнакомых школьников. За год клуб провёл $100$ заседаний, причём каждое заседание посетил хотя бы один школьник. Два школьника знакомились, если было хотя бы одно заседание, которое они оба посетили. В конце года оказалось, что количество знакомых у каждого школьника не меньше, чем количество заседаний, которые он посетил. Найдите минимальное значение $n$, при котором такое могло случиться. Решение |
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1006]
Вычислите сумму:
Из цифр 1 и 2 составили пять n-значных чисел так, что у каждых двух чисел совпали цифры ровно в m разрядах, но ни в одном разряде не совпали все пять чисел. Докажите, что отношение m/n не меньше ⅖ и не больше ⅗.
В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый
сыграл с каждым по одной партии. За победу в партии даётся 1 очко, за ничью – 0,5 очка, за поражение – 0 очков. По итогам турнира звание мастера спорта присваивали, если участник набрал более 70% от числа очков, получаемых в
случае выигрыша всех партий. Могли ли получить звание мастера спорта
Докажите, что для всех неотрицательных n выполняются равенства а) б)
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1006] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|