ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У выпуклого белого многогранника некоторые грани покрашены чёрной краской так, что никакие две чёрные грани не имеют общего ребра. Докажите, что если а) чёрных граней больше половины; б) сумма площадей чёрных граней больше суммы площадей белых граней, то в этот многогранник нельзя вписать шар.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 158]      



Задача 73549

Темы:   [ Раскраски ]
[ Описанные многогранники ]
[ Выпуклые тела ]
[ Касательные к сферам ]
Сложность: 5-
Классы: 10,11

У выпуклого белого многогранника некоторые грани покрашены чёрной краской так, что никакие две чёрные грани не имеют общего ребра. Докажите, что если а) чёрных граней больше половины; б) сумма площадей чёрных граней больше суммы площадей белых граней, то в этот многогранник нельзя вписать шар.
Прислать комментарий     Решение


Задача 109640

Темы:   [ Раскраски ]
[ Куб ]
[ Ломаные и пространственные многоугольники ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 9,10,11

Куб n×n×n сложен из единичных кубиков. Дана замкнутая несамопересекающаяся ломаная, каждое звено которой соединяет центры двух соседних (имеющих общую грань) кубиков. Назовём отмёченными грани кубиков, пересекаемые данной ломаной. Докажите, что рёбра кубиков можно окрасить в два цвета так, чтобы каждая отмеченная грань имела нечётное число, а всякая неотмеченная грань – чётное число сторон каждого цвета.

Прислать комментарий     Решение

Задача 110181

Темы:   [ Раскраски ]
[ Задачи с ограничениями ]
[ Ориентированные графы ]
[ Перестановки и подстановки (прочее) ]
[ Отношение порядка ]
Сложность: 5-

Даны  N ≥ 3  точек, занумерованных числами 1, 2, ..., N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.

Прислать комментарий     Решение

Задача 111344

Темы:   [ Раскраски ]
[ Деление с остатком ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Обыкновенные дроби ]
Сложность: 5-
Классы: 9,10,11

Натуральные числа покрашены в N цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.
  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.
  б) При каких N такая раскраска возможна?

Прислать комментарий     Решение

Задача 66685

Темы:   [ Раскраски ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Правильные многоугольники ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

На плоскости дано конечное множество $S$ точек, окрашенных в красный и зеленый цвета. Назовем множество разделимым, если для него найдется такой треугольник, что все точки одного цвета лежат строго внутри, а все точки другого – строго вне треугольника. Известно, что любые 1000 точек из $S$ образуют разделимое множество. Обязательно ли все множество $S$ разделимо?
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .