ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что расстояние от точки (x0, y0) до прямой ax + by + c = 0 равно $ {\frac{\vert ax_0+by_0+c\vert}{\sqrt{a^2+b^2}}}$.

Вниз   Решение


Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?

ВверхВниз   Решение


Дана некоторая тройка чисел. С любыми двумя из них разрешается проделывать следующее: если эти числа равны a и b, то их можно заменить на     и   .  Можно ли с помощью таких операций получить тройку     из тройки  

ВверхВниз   Решение


Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.

ВверхВниз   Решение


В прямоугольный треугольник вписана окружность. Один из катетов делится точкой касания на отрезки, равные 6 и 10, считая от вершины прямого угла. Найдите площадь треугольника.

ВверхВниз   Решение


Дано число  H = 2·3·5·7·11·13·17·19·23·29·31·37  (произведение простых чисел). Пусть 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ..., H – все его делители, выписанные в порядке возрастания. Под рядом делителей выпишем ряд из единиц и минус единиц по следующему правилу: под единицей 1, под числом, которое разлагается на чётное число простых сомножителей, 1, и под числом, которое разлагается на нечётное число простых сомножителей, –1. Доказать, что сумма чисел полученного ряда равна 0.

ВверхВниз   Решение


Полина решила раскрасить свой клетчатый браслет размером 10×2 (рис. слева) волшебным узором из одинаковых фигурок (рис. справа), чередуя в них два цвета. Помогите ей это сделать.

ВверхВниз   Решение


Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).

Вверх   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 113]      



Задача 107856

Темы:   [ Метод координат на плоскости ]
[ Системы линейных уравнений ]
[ Принцип крайнего (прочее) ]
[ Линейная и полилинейная алгебра ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

На отрезке  [0, 1]  отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.

Прислать комментарий     Решение

Задача 73603

Темы:   [ Метод координат на плоскости ]
[ Кривые второго порядка ]
[ Инварианты ]
[ Признаки и свойства касательной ]
Сложность: 5+
Классы: 8,9,10,11

Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).
Прислать комментарий     Решение


Задача 105194

Темы:   [ Раскраски ]
[ Метод координат на плоскости ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 7,8,9

Прямая раскрашена в два цвета. Докажите, что найдётся отрезок, оба конца и середина которого покрашены в один и тот же цвет.
Прислать комментарий     Решение


Задача 65575

Темы:   [ Целочисленные и целозначные многочлены ]
[ Метод координат на плоскости ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10

На графике квадратного трёхчлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Прислать комментарий     Решение

Задача 97767

Темы:   [ Свойства симметрии и центра симметрии ]
[ Метод координат на плоскости ]
Сложность: 3
Классы: 8,9,10,11

M – множество точек на плоскости. Точка O называется "почти центром симметрии" множества M, если из M можно выбросить одну точку так, что для оставшегося множества O является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .