ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В двух различных плоскостях лежат два треугольника: ABC и A1B1C1. Прямая AB пересекается с прямой A1B1, прямая BC — с прямой B1C1, прямая CA — с прямой C1A1. Доказать, что прямые AA1, BB1 и CC1 или все три пересекаются в одной точке, или параллельны друг другу.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 694]      



Задача 76428

Тема:   [ Прямые и плоскости в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

В двух различных плоскостях лежат два треугольника: ABC и A1B1C1. Прямая AB пересекается с прямой A1B1, прямая BC — с прямой B1C1, прямая CA — с прямой C1A1. Доказать, что прямые AA1, BB1 и CC1 или все три пересекаются в одной точке, или параллельны друг другу.
Прислать комментарий     Решение


Задача 86978

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . Найдите расстояние между прямыми A1D и D1C и постройте их общий перпендикуляр.
Прислать комментарий     Решение


Задача 86982

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . Точка E – середина ребра AD . Вершины M и N правильного тетраэдра MNPQ лежат на прямой ED1 , а вершины P и Q – на прямой, проходящей через точку A1 и пересекающей прямую BC в точке R . Найдите а) отношение BR:BC ; б) расстояние между серединами отрезков MN и PQ .
Прислать комментарий     Решение


Задача 87078

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортоцентрический тетраэдр ]
Сложность: 4
Классы: 8,9

Высота пирамиды ABCD , опущенная из вершины D , проходит через точку пересечения высот треугольника ABC . Кроме того, известно, что DB = b , DC = c , BDC = 90o . Найдите отношение площадей граней ADB и ADC .
Прислать комментарий     Решение


Задача 87097

Темы:   [ Углы между прямыми и плоскостями ]
[ Куб ]
[ Сфера, вписанная в двугранный угол ]
Сложность: 4
Классы: 8,9

Высота правильной треугольной призмы ABCA'B'C' равна h. Точка D расположена на ребре AB. Прямая C'D образует угол 30° с плоскостью AA'C и угол  arcsin ¾  с плоскостью ABC. Найдите:
  а) сторону основания призмы;
  б) радиус шара с центром на отрезке C'D, касающегося плоскостей ABC и AA'C'C.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .