ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность радиуса, равного высоте некоторого правильного треугольника, катится по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами треугольника на окружности, всё время равна 60o.

   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 563]      



Задача 66383

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Осевая и скользящая симметрии (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 7,8,9

Два квадрата и равнобедренный треугольник расположены так, как показано на рисунке (вершина K большого квадрата лежит на стороне треугольника). Докажите, что точки A, B и C лежат на одной прямой.

Прислать комментарий     Решение

Задача 76516

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Окружность радиуса, равного высоте некоторого правильного треугольника, катится по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами треугольника на окружности, всё время равна 60o.
Прислать комментарий     Решение


Задача 79490

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 9

На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом.
Прислать комментарий     Решение


Задача 67207

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.
Прислать комментарий     Решение


Задача 53944

Темы:   [ Построения одной линейкой ]
[ Симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
Сложность: 4-
Классы: 8,9

Дана окружность и две неравные параллельные хорды. Используя только линейку, разделите эти хорды пополам.

Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .