Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.

Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью.

Вниз   Решение


Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты.

ВверхВниз   Решение


Докажите, что при инверсии с центром O окружность, проходящая через O, переходит в прямую, а окружность, не проходящая через O, — в окружность.

ВверхВниз   Решение


Автор: Bhattacharya A.

Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что при инверсии с центром O прямая l, не проходящая через O, переходит в окружность, проходящую через O.

ВверхВниз   Решение


Докажите неравенство  2m+n–2mn,  где m и n – натуральные числа.

ВверхВниз   Решение


К окружности, вписанной в равнобедренный треугольник с основанием 12 и высотой 8, проведена касательная, параллельная основанию.
Найдите длину отрезка этой касательной, заключённого между сторонами треугольника.

ВверхВниз   Решение


Каждую из трех котлет нужно пожарить на сковороде с двух сторон в течение пяти минут каждую сторону. На сковороде умещается только две котлеты. Можно ли сжарить все три котлеты быстрее, чем за 20 минут (временем на переворачивание и перекладывание котлет пренебрегаем)?

ВверхВниз   Решение


Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра?

ВверхВниз   Решение


Доказать, что для любого треугольника отрезок, соединяющий центры вписанной и вневписанной окружностей, делится описанной окружностью пополам.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 56635

Тема:   [ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9

Через вершины A и B треугольника ABC проведены две параллельные прямые, а прямые m и n симметричны им относительно биссектрис соответствующих углов. Докажите, что точка пересечения прямых m и n лежит на описанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 66871

Тема:   [ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9,10,11

На прямой отметили точки $X_1, \ldots, X_{10}$ (именно в таком порядке) и построили на отрезках $X_1X_2$, $X_2X_3$, ..., $X_9X_{10}$ как на основаниях равнобедренные треугольники с углом $\alpha$ при вершинах. Оказалось, что все эти вершины лежат на полуокружности с диаметром $X_1X_{10}$. Найдите $\alpha$.
Прислать комментарий     Решение


Задача 77884

Темы:   [ Вписанный угол (прочее) ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
Сложность: 3+
Классы: 8,9

Доказать, что для любого треугольника отрезок, соединяющий центры вписанной и вневписанной окружностей, делится описанной окружностью пополам.
Прислать комментарий     Решение


Задача 56636

Тема:   [ Вписанный угол (прочее) ]
Сложность: 4
Классы: 8,9

а) Из точки A проведены прямые, касающиеся окружности S в точках B и C. Докажите, что центр вписанной окружности треугольника ABC и центр его вневписанной окружности, касающейся стороны BC, лежат на окружности S.
б) Докажите, что окружность, проходящая через вершины B и C любого треугольника ABC и центр O его вписанной окружности, высекает на прямых AB и AC равные хорды.
Прислать комментарий     Решение


Задача 56637

Тема:   [ Вписанный угол (прочее) ]
Сложность: 5
Классы: 8,9

На сторонах AC и BC треугольника ABC внешним образом построены квадраты ACA1A2 и BCB1B2. Докажите, что прямые  A1B, A2B2 и AB1 пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .