ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка внутри равнобокой трапеции соединяется со всеми вершинами. Доказать, что из четырёх полученных отрезков можно сложить четырёхугольник, вписанный (Разрешается, чтобы вершины четырёхугольника лежали не только на сторонах трапеции, но и на их продолжениях — прим. ред.) в эту трапецию.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 563]      



Задача 77921

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Точка внутри равнобокой трапеции соединяется со всеми вершинами. Доказать, что из четырёх полученных отрезков можно сложить четырёхугольник, вписанный (Разрешается, чтобы вершины четырёхугольника лежали не только на сторонах трапеции, но и на их продолжениях — прим. ред.) в эту трапецию.
Прислать комментарий     Решение


Задача 78187

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.

Прислать комментарий     Решение

Задача 79485

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8

На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник ромбом.
Прислать комментарий     Решение


Задача 103863

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 3
Классы: 6,7

Поля клетчатой доски размером 8×8 будем по очереди закрашивать в красный цвет так, чтобы после закрашивания каждой следующей клетки фигура, состоящая из закрашенных клеток, имела ось симметрии. Покажите, как можно, соблюдая это условие, закрасить

а) 26; б) 28 клеток.

(В качестве ответа расставьте на тех клетках, которые должны быть закрашены, числа от 1 до 26 или до 28 в том порядке, в котором проводилось закрашивание.)

Прислать комментарий     Решение


Задача 108606

Темы:   [ Неравенство треугольника ]
[ Симметрия помогает решить задачу ]
[ Четырехугольник (неравенства) ]
Сложность: 3
Классы: 8,9

В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .