ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 77945

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Перпендикулярные прямые в пространстве ]
Сложность: 2+
Классы: 10,11

Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам.
Прислать комментарий     Решение


Задача 64984

Темы:   [ Тетраэдр (прочее) ]
[ Перпендикулярные прямые в пространстве ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 4+
Классы: 10,11

Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где  (i, j, k, l)  – перестановка чисел  (1, 2, 3, 4)  (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны.

Прислать комментарий     Решение

Задача 66665

Темы:   [ Четырехугольная пирамида ]
[ Перпендикулярные прямые в пространстве ]
Сложность: 4+
Классы: 10,11

Автор: Солынин А.

Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка.

На любых двух соседних гранях штриховка перпендикулярна. Существует ли выпуклый многогранник с числом граней, не равным $6$, грани которого можно заштриховать аналогичным образом?
Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .