ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Расстояния от центра описанной окружности остроугольного
треугольника до его сторон равны da, db и dc. Докажите,
что
da + db + dc = R + r.
С помощью циркуля и линейки постройте выпуклый четырёхугольник по серединам его трёх равных сторон. Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½. Сумма трёх натуральных чисел, являющихся точными квадратами, делится на 9. Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми? Две окружности разных радиусов касаются в точке C одной прямой и расположены по одну сторону от неё. Отрезок CD – диаметр большей окружности. Из точки D проведены две прямые, касающиеся меньшей окружности в точках A и B. Прямая, проходящая через точки C и A, образует с общей касательной к окружностям в точке C угол 75° и пересекает большую окружность в точке M. Известно, что AM = Биссектриса угла A треугольника ABC пересекает
описанную окружность в точке D. Докажите, что
AB + AC Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну овцу? На сторонах произвольного остроугольного
треугольника ABC как на диаметрах построены окружности.
При этом образуется три к внешнихк криволинейных треугольника
и один к внутреннийк (рис.). Докажите, что если из
суммы площадей к внешнихк треугольников вычесть площадь
к внутреннегок треугольника, то получится удвоенная площадь
треугольника ABC.
Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам. |
Страница: << 1 2 [Всего задач: 8]
Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам.
Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где (i, j, k, l) – перестановка чисел (1, 2, 3, 4) (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны.
Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка.
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке