Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 694]
Дана последовательность целых чисел, построенная следующим образом:
a1 — произвольное трёхзначное число,
a2 — сумма квадратов его цифр,
a3 — сумма квадратов цифр числа
a2 и т.д. Докажите, что в
последовательности
a1,
a2,
a3, ...обязательно встретится либо 1,
либо 4.
|
|
Сложность: 5 Классы: 10,11
|
Даны 2
n конечных последовательностей из нулей и единиц, причём ни одна из
них не является началом никакой другой. Доказать, что сумма длин этих
последовательностей не меньше
n . 2
n.
|
|
Сложность: 5 Классы: 8,9,10
|
Можно ли выбрать некоторые натуральные числа так, чтобы при любом натуральном
значении
n хотя бы одно из чисел
n,
n + 50 было выбрано и хотя бы одно из
чисел
n,
n + 1987 не было выбрано?
|
|
Сложность: 5 Классы: 10,11
|
Докажите, что если числа a1, a2, ..., am отличны от нуля и для любого целого k = 0, 1, ..., n (n < m – 1) выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0, то в последовательности a1, a2, ..., am есть по крайней мере n + 1 пара соседних чисел, имеющих разные знаки.
|
|
Сложность: 5 Классы: 10,11
|
Последовательность
a1,a2,.. такова, что
a1(1
,2)
и
ak+1
=ak+ при любом натуральном
k .
Докажите, что в ней не может существовать более одной пары членов с целой суммой.
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 694]