ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Постройте на координатной плоскости множество точек, удовлетворяющих равенству max {x, x²} + min {y, y²} = 1. B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный? При изучении иностранного языка класс делится на две группы. Ниже даны списки групп и полугодовые оценки учащихся. Может ли учительница английского языка перевести одного ученика из первой группы во вторую так, чтобы средний балл учащихся в обеих группах вырос? Изобразите на фазовой плоскости Opq множество точек (p, q), для которых уравнение x³ + px + q = 0 имеет три различных корня, принадлежащих интервалу (–2, 4). Три пирата вечером поделили добытые за день бриллианты: по двенадцать Биллу и Сэму, а остальные – Джону, который считать не умел. Ночью Билл у Сэма, Сэм у Джона, а Джон у Билла украли по одному бриллианту. В результате средняя масса бриллиантов у Билла уменьшилась на один карат, у Сэма уменьшилась на два карата, зато у Джона увеличилась на четыре карата. Сколько бриллиантов досталось Джону? Найдите все значения параметра a, при которых корни x1, x2, x3 многочлена x3 – 6x2 + ax + a удовлетворяют
равенству Изобразите на фазовой плоскости Opq множества точек (p, q), для которых все корни уравнения x³ + px + q = 0 не превосходят по модулю 1. На доске написано уравнение x³ + *x² + *x + * = 0. Петя и Вася по очереди заменяют звёздочки на рациональные числа: вначале Петя заменяет любую из звёздочек, потом Вася – любую из двух оставшихся, а затем Петя – оставшуюся звёздочку. Верно ли, что при любых действиях Васи Петя сможет получить уравнение, у которого разность каких-то двух корней равна 2014? Коэффициенты квадратного уравнения x² + px + q = 0 изменили не больше чем на 0,001. Два четырехугольника $ABCD$ и $A_1B_1C_1D_1$ симметричны друг другу относительно точки $P$. Известно, что четырехугольники $A_1BCD$, $AB_1CD$ и $ABC_1D$ вписанные. Докажите, что $ABCD_1$ тоже вписанный. Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что PC = QC. На координатной плоскости изображен график функции y = ax² + bx + c (см. рисунок). В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны. Назовём геометрико-гармоническим средним чисел a и b общий предел последовательностей {an} и {bn}, построенных по правилу a0 = a, b0 = b, an+1 =
Обозначим его через ν(a, b). Докажите, что величина
ν(a, b) связана с μ(a, b) (см. задачу 61322) равенством
ν(a, b)·μ(1/a, 1/b) = 1.
Даны две окружности и точка. Построить отрезок, концы которого лежат на данных окружностях, а середина — в данной точке.
На плоскости даны две параболы: $y = x^2$ и $y = x^2 - 1$. Пусть $U$ – множество всех точек плоскости, лежащих между параболами (включая точки на самих параболах). Существует ли отрезок длины более $10^6$, целиком содержащийся в $U$? На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются. Доказать неравенство |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Коэффициенты квадратного уравнения x² + px + q = 0 изменили не больше чем на 0,001.
Доказать неравенство
Существуют ли такие попарно различные натуральные числа m, n, p, q, что m + n = p + q и
Пусть m, n и k – натуральные числа, причём m > n. Какое из двух чисел больше: (В каждом выражении k знаков квадратного корня, m и n чередуются.)
Докажите, что для любого натурального n ≥ 2 справедливо неравенство:
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке