Страница:
<< 165 166 167 168
169 170 171 >> [Всего задач: 1221]
Точки A1, A2, A3, A4, A5, A6 делят окружность радиуса 1 на шесть равных частей. Из A1 провёден луч l1 в направлении A2, из A2 – луч l2 в направлении A3, ..., из A6 – луч l6 в направлении A1. Из точки B1, взятой на луче l1, опускается
перпендикуляр на луч l6, из основания этого перпендикуляра опускается перпендикуляр на l5 и т. д. Основание шестого перпендикуляра совпало с B1. Найти отрезок B1A1.
Доказать, что если целое n > 2, то (n!)² > nn.
Доказать, что если n чётно, то числа 1, 2, 3, ..., n² можно таким образом расположить в квадратную таблицу n×n, чтобы суммы чисел, стоящих в каждом столбце, были одинаковы.
|
|
Сложность: 3 Классы: 7,8,9,10
|
Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой
вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)
В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более
чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50
штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на
20 г.
Страница:
<< 165 166 167 168
169 170 171 >> [Всего задач: 1221]