ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1221]      



Задача 34899

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 2+

Докажите, что число разложений натурального числа n в сумму различных натуральных слагаемых равно числу разложений числа n в сумму нечетных (возможно, повторяющихся) натуральных слагаемых.
Прислать комментарий     Решение


Задача 34901

Тема:   [ Подсчет двумя способами ]
Сложность: 2+

В таблицу n*n записаны n2 чисел, сумма которых неотрицательна. Докажите, что можно переставить столбцы таблицы так, что сумма n чисел, расположенных по диагонали, идущей из левого нижнего угла в правый верхний, будет неотрицательна.
Прислать комментарий     Решение


Задача 32036

Темы:   [ Разбиения на пары и группы; биекции ]
[ Куб ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 6,7,8

Петя написал на гранях кубика натуральные числа от 1 до 6. Вася кубика не видел, но утверждает, что

а) у этого кубика есть две соседние грани, на которых написаны соседние числа;

б) таких пар соседних граней у кубика не меньше двух.

Прав ли он в обоих случаях? Почему?

Прислать комментарий     Решение


Задача 78204

Темы:   [ Перебор случаев ]
[ Раскладки и разбиения ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)

Прислать комментарий     Решение

Задача 103874

Темы:   [ Перебор случаев ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 6,7

Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .