ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Через концы диаметра окружности проведены две хорды, пересекающиеся на окружности и равные 12 и 16. Найдите расстояния от центра окружности до этих хорд.
Дан выпуклый четырехугольник $ABCD$. Прямая $l \parallel AC$ пересекает прямые $AD, BC, AB, CD$ в точках $X, Y, Z, T$. Описанные окружности треугольников $XYB$ и $ZTB$ вторично пересекаются в точке $R$. Докажите, что $R$ лежит на прямой $BD$. Дан острый угол с вершиной A и точка E внутри него. Построить на сторонах угла точки B, C так, чтобы E была центром окружности Эйлера треугольника ABC.
Угол при основании равнобедренного треугольника равен
Пусть h — наибольшая высота нетупоугольного
треугольника. Докажите, что r + R Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B. Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD.
Многочлен $P(x, y)$ таков, что для всякого целого $n\geqslant 0$ каждый из многочленов $P(n, y)$ и $P(x, n)$ либо тождественно равен нулю, либо имеет степень не выше $n$. Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что ∠ABM = ∠CBN. Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что AC' = A'C. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 352]
Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что ∠ABM = ∠CBN. Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что AC' = A'C.
Верно ли, что два треугольника ABC и A'B'C' равны, если AB =A'B', BC = B'C', и ∠A = ∠A'?
Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности.
Точки A, B, C, D лежат на одной прямой. Докажите, что если треугольники ABE1 и ABE2 равны, то треугольники CDE1 и CDE2 тоже равны.
Треугольники ABC и BAD равны, причём точки C и D лежат по разные стороны от прямой AB. Докажите, что:
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке