Страница:
<< 19 20 21 22 23
24 25 >> [Всего задач: 122]
|
|
Сложность: 5 Классы: 8,9,10
|
Дана бесконечная клетчатая бумага и фигура,
площадь которой меньше площади клетки. Докажите, что
эту фигуру можно положить на бумагу, не накрыв ни одной
вершины клетки.
Дан бумажный треугольник, площадь которого равна ½, а квадраты всех сторон – целые числа.
Докажите, что в него можно завернуть квадрат с площадью ¼ (треугольник можно сгибать, но нельзя резать).
|
|
Сложность: 4- Классы: 8,9,10
|
На листе бумаги нанесена сетка из
n горизонтальных и
n вертикальных прямых. Сколько различных замкнутых 2
n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного
замкнутого верёвочного контура, то игрок, сделавший последний ход, считается
проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?
|
|
Сложность: 4 Классы: 6,7,8,9
|
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка A на плане) до своего отеля (точка B). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет.
Страница:
<< 19 20 21 22 23
24 25 >> [Всего задач: 122]