Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Многоугольник описан около окружности радиуса r. Докажите, что его площадь равна pr, где p — полупериметр многоугольника.

Вниз   Решение


Через точку A, лежащую на окружности, проведены диаметр AB и хорда AC, причём AC = 8 и $ \angle$BAC = 30o. Найдите хорду CM, перпендикулярную AB.

ВверхВниз   Решение


Даны 20 различных натуральных чисел, меньших 70. Докажите, что среди их попарных разностей найдутся четыре одинаковых.

ВверхВниз   Решение


На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что   ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

ВверхВниз   Решение


Лесник считал сосны в лесу. Он обошёл 5 кругов, изображённых на рисунке, и внутри каждого круга насчитал ровно 3 сосны.
Может ли быть, что лесник ни разу не ошибся?

ВверхВниз   Решение


Найдите первые 99 знаков после запятой в разложении числа   .

ВверхВниз   Решение


Положительные рациональные числа a и b записаны в виде десятичных дробей, у каждой из которых минимальный период состоит из 30 цифр. У десятичной записи числа  a – b  длина минимального периода равна 15. При каком наименьшем натуральном k длина минимального периода десятичной записи числа  a + kb  может также оказаться равной 15?

ВверхВниз   Решение


На плоскости отмечены четыре точки. Докажите, что их можно разбить на две группы так, что эти группы точек нельзя будет отделить одну от другой никакой прямой.

ВверхВниз   Решение


Пусть  A1, B1, C1 и D1 — середины сторон  CD, DA, AB, BC квадрата ABCD, площадь которого равна S. Найдите площадь четырехугольника, образованного прямыми  AA1, BB1, CC1 и DD1.

ВверхВниз   Решение


Поставьте в каждом из шести чисел по одной запятой так, чтобы равенство стало верным:  2016 + 2016 + 2016 + 2016 + 2016 = 46368.

ВверхВниз   Решение


Найдите все шестизначные числа, которые увеличиваются в целое число раз при перенесении последней цифры в начало.

ВверхВниз   Решение


Точки A, B, C и D лежат на окружности с центром O. Прямые AB и CD пересекаются в точке E, а описанные окружности треугольников AEC и BED пересекаются в точках E и P. Докажите, что:
а) точки A, D, P и O лежат на одной окружности;
б)  $ \angle$EPO = 90o.

ВверхВниз   Решение


В равнобедренном треугольнике ABC угол при вершине B равен 120°, а основание равно 8. Найдите боковые стороны.

ВверхВниз   Решение


На плоскости даны три точки. Построить три окружности, касающиеся друг друга в этих точках. Разобрать все случаи.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 57249

Тема:   [ Окружности (построения) ]
Сложность: 2
Классы: 8,9

Внутри угла даны две точки A и B. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки.
Прислать комментарий     Решение


Задача 78549

Тема:   [ Окружности (построения) ]
Сложность: 2+
Классы: 8,9

Даны окружность O, прямая a, пересекающая её, и точка M. Через точку M провести секущую b так, чтобы её часть, заключённая внутри окружности O, делилась пополам в точке её пересечения с прямой a.
Прислать комментарий     Решение


Задача 53916

Темы:   [ Окружности (построения) ]
[ Построение треугольников по различным элементам ]
Сложность: 3-
Классы: 8,9

Постройте окружность данного радиуса, высекающую на данной прямой отрезок, равный данному.

Прислать комментарий     Решение

Задача 57250

Тема:   [ Окружности (построения) ]
Сложность: 3
Классы: 8,9

Даны окружность S, точка A на ней и прямая l. Постройте окружность, касающуюся данной окружности в точке A и данной прямой.
Прислать комментарий     Решение


Задача 78564

Темы:   [ Окружности (построения) ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 10,11

На плоскости даны три точки. Построить три окружности, касающиеся друг друга в этих точках. Разобрать все случаи.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .