ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Метрические соотношения
>>
Метрические соотношения (прочее)
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный. Решение |
Страница: 1 [Всего задач: 3]
Дан выпуклый четырёхугольник ABCD. Обозначим через IA, IB, IC и ID центры вписанных окружностей ωA, ωB, ωC и ωD треугольников DAB, ABC, BCD и CDA соответственно. Оказалось, что ∠BIAA + ∠ICIAID = 180°. Докажите, что ∠BIBA + ∠ICIBID = 180°.
Страница: 1 [Всего задач: 3] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|