ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что f (0) = f (1) = 0 и что |f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям? Правильную четырёхугольную пирамиду пересекает плоскость, проходящая через вершину основания перпендикулярно противоположному боковому ребру. Площадь получившегося сечения в два раза меньше площади основания пирамиды. Найдите отношение высоты пирамиды к боковому ребру. Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3.
С помощью циркуля и линейки постройте четырёхугольник по трём сторонам и углам, прилежащим к четвёртой.
В треугольник с периметром, равным 20, вписана окружность. Отрезок касательной, проведённый к окружности параллельно основанию, заключённый между сторонами треугольника, равен 2,4. Найдите основание треугольника. Шестиугольник ABCDEF вписан в окружность. Известно, что AB·CF = 2BC·FA, CD·EB = 2DE·BC, EF·AD = 2FA·DE. Последовательность a0, a1, a2, ... задана условиями a0 = 0, an+1 = P(an) (n ≥ 0), где P(x) – многочлен с целыми коэффициентами,
P(x) > 0 при x ≥ 0. Дан вписанный четырёхугольник, острый угол между диагоналями которого равен φ. Докажите, что острый угол между диагоналями любого другого четырёхугольника с теми же длинами сторон (идущими в том же порядке) меньше φ. Дан треугольник со сторонами a, b и c. Прямая, параллельная стороне, равной a, касается вписанной окружности треугольника и пересекает две другие стороны в точках M и N. Найдите MN. Постройте вписанный четырехугольник по четырем
сторонам (Брахмагупта).
Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$. Правильную четырёхугольную пирамиду PQRST с вершиной P пересекает плоскость, проходящая через основание M высоты PM , перпендикулярная грани SPT и параллельная ребру ST . Высота PM в два раза больше ребра ST . Найдите отношение площади получившегося сечения к площади основания пирамиды. Известно, что ортогональные проекции некоторого тела на две непараллельные плоскости являются кругами. Докажите, что эти круги равны. В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973? |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]
k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и k ≤ n почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.
Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?
В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке