Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы.

Вниз   Решение


Найти наименьшее n такое, что любой выпуклый 100-угольник можно получить в виде пересечения n треугольников. Докажите, что для меньших n это можно сделать не с любым выпуклым 100-угольником.

ВверхВниз   Решение


В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону?

ВверхВниз   Решение


На перпендикуляре к плоскости прямоугольника ABCD , проходящем через точку A , взята точка P , отличная от A . Докажите, что а) плоскость APB перпендикулярна плоскости APD ; б) плоскость APB перпендикулярна плоскости BPC ; в) плоскость APD перпендикулярна плоскости DPC .

ВверхВниз   Решение


Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14.

ВверхВниз   Решение


Даны две непересекающиеся окружности. Найдите геометрическое место точек центров окружностей, делящих пополам данные окружности (т. е. пересекающих их в диаметрально противоположных точках).

ВверхВниз   Решение


На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали?

ВверхВниз   Решение


Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

ВверхВниз   Решение


Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.

ВверхВниз   Решение


Высота пирамиды ABCD , опущенная из вершины D , проходит через точку пересечения высот треугольника ABC . Кроме того, известно, что DB = b , DC = c , BDC = 90o . Найдите отношение площадей граней ADB и ADC .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 93]      



Задача 86971

Темы:   [ Теорема о трех перпендикулярах ]
[ Высота пирамиды (тетраэдра) ]
Сложность: 4-
Классы: 10,11


Каждая из боковых граней треугольной пирамиды образует с плоскостью основания угол в 60o. Стороны основания равны 10, 10, 12. Найдите объем пирамиды.

Прислать комментарий     Решение


Задача 86972

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


Основание пирамиды - ромб с острым углом в 30o. Боковые грани наклонены к плоскости основания под углом в 60o. Найдите объем пирамиды, если радиус вписанного в ромб круга равен r.

Прислать комментарий     Решение


Задача 86973

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


Основание пирамиды - параллелограмм ABCD с площадью m2. Известно, что BD перпендикулярно AD. Двугранные углы при ребрах AD и BC равны 45o, а при ребрах AB и CD - 60o. Найдите боковую поверхность и объем пирамиды.

Прислать комментарий     Решение


Задача 87358

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


В основании четырехугольной пирамиды лежит ромб ABCD, в котором $ \angle$BAD = 60o. Известно, что SD = SB, SA = SC = AB. На ребре DC взята точка E так, что площадь треугольника BSE наименьшая среди площадей всех сечения пирамиды, содержащих отрезок BS и пересекающих отрезок DC. Найдите отношение DE : EC.

Прислать комментарий     Решение


Задача 87078

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортоцентрический тетраэдр ]
Сложность: 4
Классы: 8,9

Высота пирамиды ABCD , опущенная из вершины D , проходит через точку пересечения высот треугольника ABC . Кроме того, известно, что DB = b , DC = c , BDC = 90o . Найдите отношение площадей граней ADB и ADC .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .